Developing an IoT security practice for durable innovation

Josh Nash,
Principal Product Planner,
Azure Sphere
IoT is fueling digital transformation

20 billion connected devices by 2020
—Gartner

- Smart homes
- Smart factories
- Smart stadiums
- Smart cities
- Smart vehicles
- Smart offices

Data & Intelligence

41.6B
Connected "things" by 2025 generating 79ZB of data

$130B
New monetization avenues due to IoT-related services

80%
Companies that increased revenue as a result of IoT implementation

$100M
Average increase in operating income (avg. 8%) among the most digitally transformed enterprises
Reduce costs
Delight customers
Streamline operations
Create new business models
Planning your IoT deployment

- **PoC stage**: slow climb in value
- **Production deployment**: delivering real business value
- **Iteration**: accelerating value through digital feedback loop
“When smart gadgets spy on you: Your home life is less private than you think”

“Industrial IoT to equip new era of corporate intruders coming in through devices”

“Cyberattacks on IOT devices surge 300% in 2019, ‘measured in billions’, report claims”

“The Lurking Danger of Medical Device Hackers”

“The IoT ransomware threat is more serious than you think”

“Hacking critical infrastructure via a vending machine? The IoT reality”

“Webcam firm recalls hackable devices after mighty Mirai botnet attack”

“Hackers exploit casino’s smart thermometer to steal database info”
74% of consumers would pay more for a smart device that had additional security.

65% of consumers wouldn’t purchase a smart device from a brand that has experienced a security breach.

93% of consumers believe that manufacturers need to do more to secure smart devices.
97% of enterprises call out security as a concern when adopting IoT

22% enterprise customers are willing to pay 22% more for IoT cybersecurity

70% and they would buy 70% more devices if security concerns were mitigated
Governments taking action

USA
- State legislation passed (CA, OR, NY, IL, MD)
- Several bills introduced to Congress
- NIST mandated to define multiple baselines

Europe/UK
- Security certifications under the EU Cybersecurity Act
- UK Code of Conduct informed ETSI Standard
- UK testing different consumer labels

APAC
- Singapore aims to define security guidelines
- Japanese campaign to hack consumer devices
Cybercrime is big business for bad actors

- Nation-states
- Organized criminal groups
- Corporate competitors
- Opportunists
- Hacktivists
- Company insiders
A look at device-level attack surfaces

Applications
Network communications
Network stack
OS/Platform
Hardware
IoT attacks put businesses at risk

- Devices bricked or held for ransom
- Devices are used for malicious purposes
- Data & IP theft
- Data polluted & compromised
- Devices used to attack networks
IoT attacks put businesses at risk

- Devices bricked or held for ransom
- Devices are used for malicious purposes
- Data & IP theft
- Data polluted & compromised
- Devices used to attack networks

The cost of IoT attacks

- Stolen IP & other highly valuable data
- Compromised regulatory status or certifications
- Brand impact (loss of trust)
- Financial and legal responsibility
- Recovery costs
- Downtime
- Security forensics
Assessing the risk:

- Would device/equipment downtime hurt revenue?
- Would there be out of pocket costs related to downtime?
- Does the device/equipment perform a critical task that people depend on for health and safety?

Your devices or mission critical equipment are rendered useless. The only possible recovery options require you to roll a truck or to pay ransom to your attacker.
Devices bricked or held for ransom

Access to the HW and storage is typically the goal for attackers in attacks like this.

Methods of achieving this include malicious or unauthorized code execution that escalates privileges and gives them access to the deepest parts of the platform where they can modify the storage.
Devices bricked or held for ransom

Strategies and capabilities for mitigation

Defense in depth: multiple layers of defense that control access to storage

Compartmentalization: to limit access to various aspects of the OS

Hardware barriers: such as MMU to manage the flow of communication on the chip

Over-the-air (OTA) updates: to renew security on devices limiting the opportunity for success

Best practice: Vertically integrated system where all these capabilities interlock and comprehensively refreshed together
Assessing the risk:

- Do your devices access heating elements, gas or water lines, or operate in a potentially dangerous context?
- Could your devices cause physical harm to the people that operate them?
- Can your devices cause a privacy breach in their environment?

Your devices are used to do harm in the environments they operate in. This could lead to privacy breaches, physical damage and injury, brand degradation and legal liability.
Methods of achieving this include attack that imitate your command and control through network tampering. Attackers may also trick a device into running malicious code, giving them access to a device’s physical controls.
Devices are used for malicious purposes

Strategies and capabilities for mitigation

Private/public key pairings: with trusted crypto and protocols; to ensure trusted communication

Secure boot: to ensure that devices only run authentic and current software

App containers and privilege restrictions: to limit access to physical controls

Stack canaries: to defend against ROP attacks and some forms of overflows

OS-based app manifest: that defines what is appropriate and governs app behavior
The data and insights coming from your devices can’t be trusted. You may have no way of identifying the issue until something severe goes wrong.

Assessing the risk:

- Are you using the data to make critical decisions about your business?
- Does the data from your devices inform machine learning (ML) or artificial intelligence (AI) models?
- Are you generating revenue or billing customers based on the data coming from your devices?
Methods of achieving this include man-in-the-middle type attacks where outbound data/packets are manipulated. Devices may also be impersonated by exploiting identity weakness including shared passwords and keys and certificates that are not protected properly.
Mutual authentication: ensures the server and client are authenticated

A unique unforgeable identity: in the silicon

Attestation: to ensure only authentic devices, running trusted software, connect to your service

Signed, encrypted communications: to ensure data and packets in motion are not compromised

Best Practice: private keys generated by device in a secured environment and stored in a key vault that is only accessible by the HW root of trust.
This is your security team.
Microsoft and partner expertise to protect the specifics of your solution

IoT security cutting edge
From the Seven Properties to the Security Maturity Model, we develop or contribute to the ideas driving IoT security

Decades of industry experience
Microsoft has protected endpoints and data for decades, and we analyze billions of threat signals today

Insight into coming standards and regulations
Our advocacy work with governments and standards bodies means you won’t be surprised by new regulation

Powerful partner ecosystem
IoT partners are ready and informed with the content they need to build secure IoT for your industry
The IoT security landscape: protect all your IoT assets

Devices
- Security support for any device
- Edge workloads protected by enclaves
- Threat monitoring and mitigation across devices

Connection
- Reliable protocols and technology
- Standards-based mutual authentication

IoT services
- Security by design in IoT Hub and IoT Central
- Scalable, policy-based access control
- Industry-leading reliability and resilience

Security posture and monitoring, alerts, and response
Azure Sphere

An end-to-end solution for securely connecting existing equipment and to create new IoT devices with built-in security. Put the power of Microsoft’s expertise to work for you everyday.

- Azure Sphere certified chips
- The Azure Sphere Operating System
- The Azure Sphere Security Service
- Azure Sphere Ongoing Servicing

Over 10 years of security and OS updates delivered directly to each device by Microsoft
Windows for IoT

Windows for IoT has the features and manageability you expect from Windows 10

Built-in Windows 10 security that’s always up-to-date and supported for 10 years with security patches

Protects your IoT solutions from device to cloud with the latest security advances in Windows 10

A team of security and privacy experts focused on the platform

Windows 10 IoT Core & Services

For small-footprint, smart devices
Enabling lower cost devices

Windows 10 IoT Enterprise

For fixed-function, smart devices
Locked down, full edition of Windows 10

Windows Server IoT 2019

For the most demanding edge computing workloads

Built on the foundation of 900M active Windows 10 devices
Azure Security Center provides threat protection and security posture management capabilities for your cross-cloud and IoT resources, including Microsoft and 3rd party devices. Azure Security Center is the first end-to-end IoT security service from a major cloud provider that enables organizations to prevent, detect, and help remediate potential attacks on all the different components that make up an IoT deployment.
The time is now
Talk to your Microsoft representative today