

O in Action

#IoTinActionMS

Smart Infrastructure Technology Enablers

Adam Steel – Sector Lead Luca Cassani – Technology Strategist

13% of world's GDP is related to the Built Environment spending, 9% in the UK

\$57T

\$57 trillion in infrastructure needed by 2030 (globally)

people work in construction in UK in over 280,000 businesses

The state of the nation

of the work performed is rework

of construction professionals time spent on non-productive activities

The UK government strategy

Lower costs

33%

reduction in the initial cost of construction and the whole life cost of built assets

Lower emissions

50%

reduction in greenhouse gas emissions in the built environment

Faster delivery

50%

reduction in the overall time, from inception to competion, for newbuild and refurbished assets

Improvement in exports

reduction in the trade gap between total exports and total imports for construction products and materials

Digital technology

In all the design and construction phases and industry collaboration across the entire lifecycle to improve safety, quality and productivity

To minimize wastage, inefficiencies and delays

Asset lifecycle performance

Focus shift from Construction cost to TOTEX

New Infrastructure

New pipeline for public and private infrastructure for the next 10 years

In the sector

Innovation investment

From tech, sector and government to support innovation in the sector

The opportunity

The enablers

Source: UK Government Construction Sector Deal.

The end to end Built Environment digital twin

DevOps and software development

· Benefits

- Shortened time to deploy changes
- Higher Quality Less re-work
- Continuous improvement
- Predictability

Challenges

- Integrating teams
- Building trust
- Culture change
- Skills and Training
- Business/Technology Change
 - Automation Testing and Deployment
 - Integrated ToolChains
 - Infrastructure as Code
 - Software Defined Networks
 - Cloud Services

DevOps for the Built Environment

· Benefits

- BIM reflects built Assets
- Shortened time to deploy changes
- Less re-work
- Continuous improvement
- · Challenges
 - Integrating teams and the supply-chain
 - Building trust
 - Culture change
- Business/Technology Change
 - Common Data Environment (CDE)
 - Common data formats
 - New roles and processes
 - Agile approach

A history of physical and digital interaction

R&D & ENGINEERING

MANUFACTURING OPERATIONS, SERVICES

NEW SERVICES DRIVEN BUSINESS MODELS

Information mirroring* model

1985-2002

(18 years)

- Powerful modeling and analysis
- R&D and engineering focus

Simulation and 3D printing

- Digital design, virtual assembly, and simulation
- 3D printing mainstream

2003-2014 (12 years)

Connected IoT services

- Unified physical and virtual data
- Rapid feedback across design, manufacturing, and operations

2015-2017 (3 years)

End-to-end innovation

- Humans and device collaboration
- Spatial awareness and intelligence
- Mixed Reality experience

2018 - (the future is now)

Digital Twin evolution

Virtual Object Real Object

Remote Monitoring Predictive Maintenance

Enable any organization to create digital feedback loops for all aspects of their business

The digital twin pioneers - Aerospace

The end to end Built Environment digital twin

The technology enablers

The technology enablers

What is knowledge mining?

Unlock valuable information lying latent in all your content

Knowledge mining with Azure Search

Custom skills

Landmark detection

Printed text recognition

How knowledge mining works

Knowledge mining – customer story

- Howden, a global engineering company, focuses on providing quality solutions for air and gas handling, from mine ventilation and waste water treatment to heating and cooling.
- Every new project requires the creation of a bid proposal, typically of thousands of pages in PDF format to be scoured to identify key areas of design and specialized components in order to produce accurate bids.
- If they miss key or critical details, they can bid too low and lose money, or bid too high and lose the customer opportunity.

HPC simulations and design cycle times

Inflexible Software Contracts

Not enough licenses for scaling simulation

Fixed Resources Competition for resources causes delays

Storage Management Result files are too large to move around

Orchestration Obstacles Managing simulation work is complex

Geographical Disparity Globally dispersed engineering teams

A comprehensive HPC strategy on Azure

On-demand

Access on-demand compute resources that enable you to run large parallel and batch compute jobs in the cloud, right when you need to

Extensible

Extend on-premises HPC cluster to the cloud when you need more capacity, or choose to run simulations entirely in the cloud

Scalable

Scale up and down easily, and take advantage of advanced networking features such as RDMA to run true HPC applications using MPI

Native Linux & Windows support

 $\langle \cdots \rangle$

RDMA support VPN & Express Route (MPLS) networking

Broad partner ecosystem

Azure HPC Attributes

Azure HPC specialized infrastructure

Compute Optimized VMs Gaming, Analytics

>80,000 IOPs **Premium Storage** Low latency, high throughput apps

High Performance VMs

Batch processing, fluid dynamics, monte carlo simulation

Ν

GPU-enabled VMs

NV -Graphic based applications

NC – Advanced Simulation

•	
•	
•	
-	
-	

FPGA*

Virtual Machines – HPC FPGA Microservices -

11111	•	11111	
11111		11111	
11111	•	11111	•
11111	•		•
11111	•		•
11111			
11111		11111	

Cray Services in Azure

IB Connected CPU/GPU/Storage available in cloud

Challenges in transforming your business processes

Microsoft Power Platform

Low-code / No-code app dev experiences

Tailor out-of-the-box solutions, embedded forms and dashboards

Check SS Service Service

Highly customized taskand role-based apps

Immersive, end-to-end solutions

SOPHISTICATION

and saved around 288 hours of manual input data.

© Copyright Microsoft Corporation All rights reserved