

O in Action

#IoTinActionMS

IoT Continuum: Evolving Business

Michael Kuptz GM America IoT & Mixed Reality Sales Microsoft

Digital transformation

Tech intensity = (Tech adoption x Tech capability)^{Trust}

70%

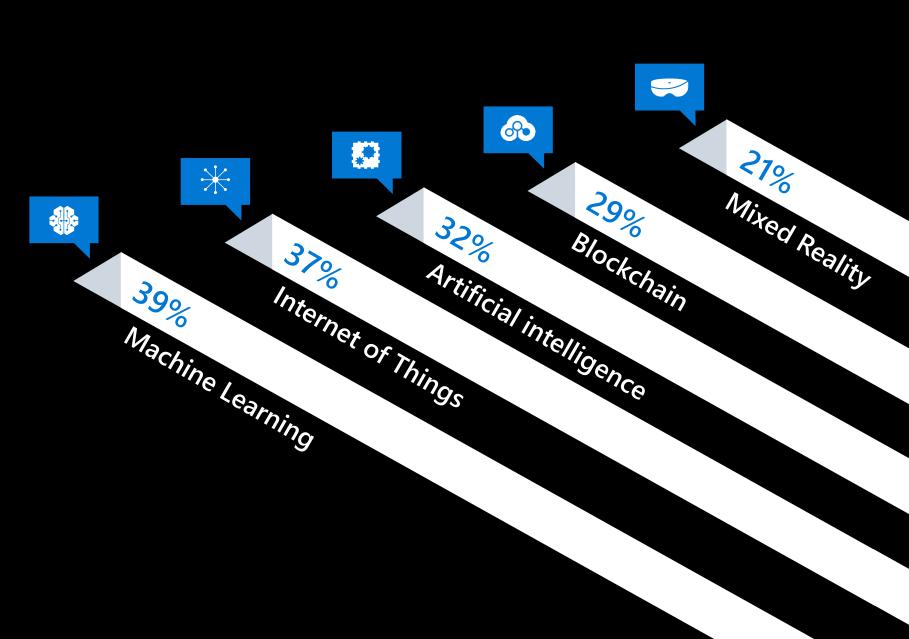
Digital transformation through tech intensity

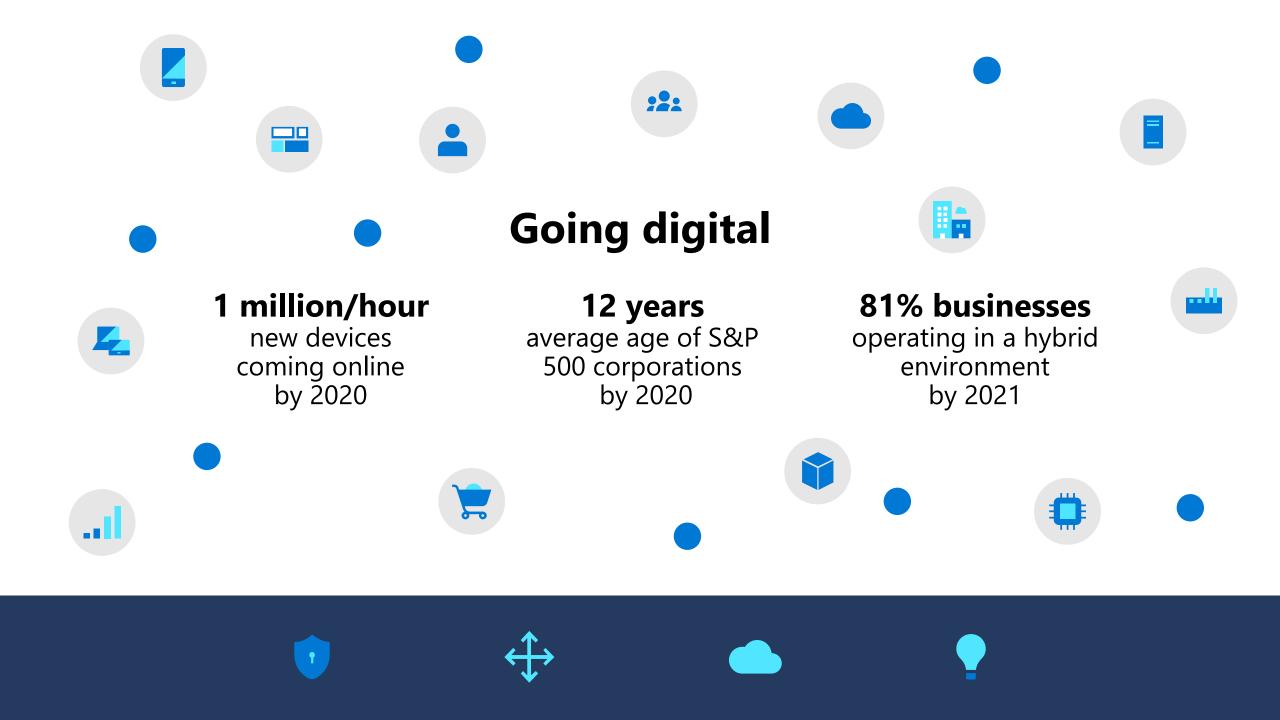
37%

Leading with IoT engagements

23%

% of Global IoT Projects which are Smart City (#1 Vertical)

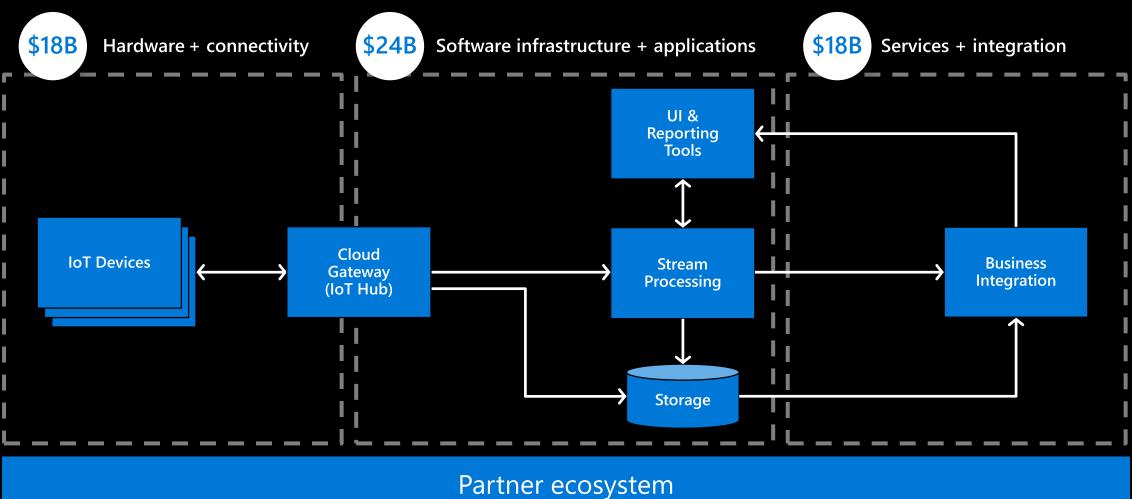




How can any entity profit from their data and cloud platform?

Blueprint to profitability

2020 \$60B loT market



Three emerging patterns of digital transformation

- Customers are on a journey with different digital maturity levels

Build digital businesses

Modernization

Build digital

capabilities

Foundation for Digital Transformation

Common initiatives:

- Digital workplaces
- Digital customer experiences
- Transforming the infrastructure
- Application modernization

Industry & Horizontal

Solution-centric opportunities

Industry Solution examples:

• Predictive Maintenance, Customer Insights, Citizen Services

Horizontal Solution examples:

 Digital Marketing, Employee Self-Service, Smart Buildings, Security & Surveillance

Transformational

Reimagine their businesses

CXO sponsorship

Digital Maturity Model assessment

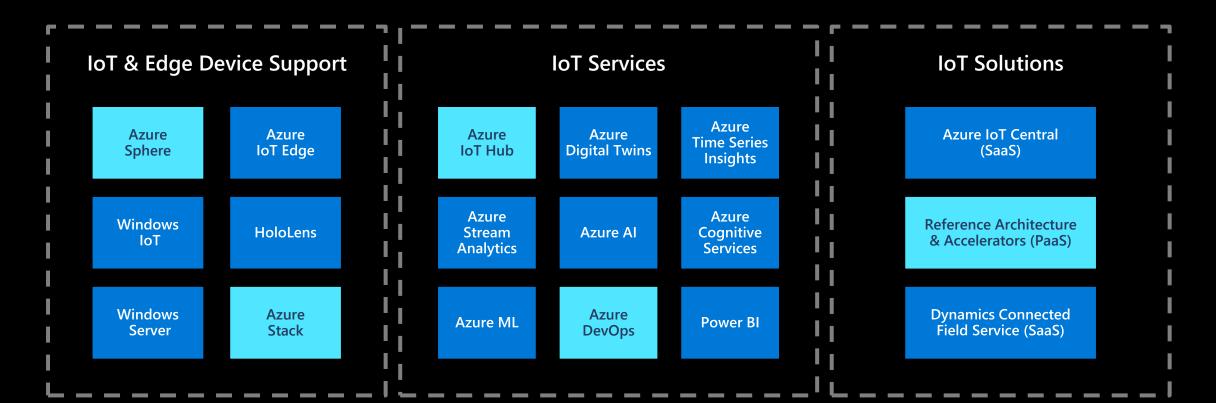
Comprehensive program of change

Evolves into new **commercial business models**

Blueprint to profitability

Partner ecosystem

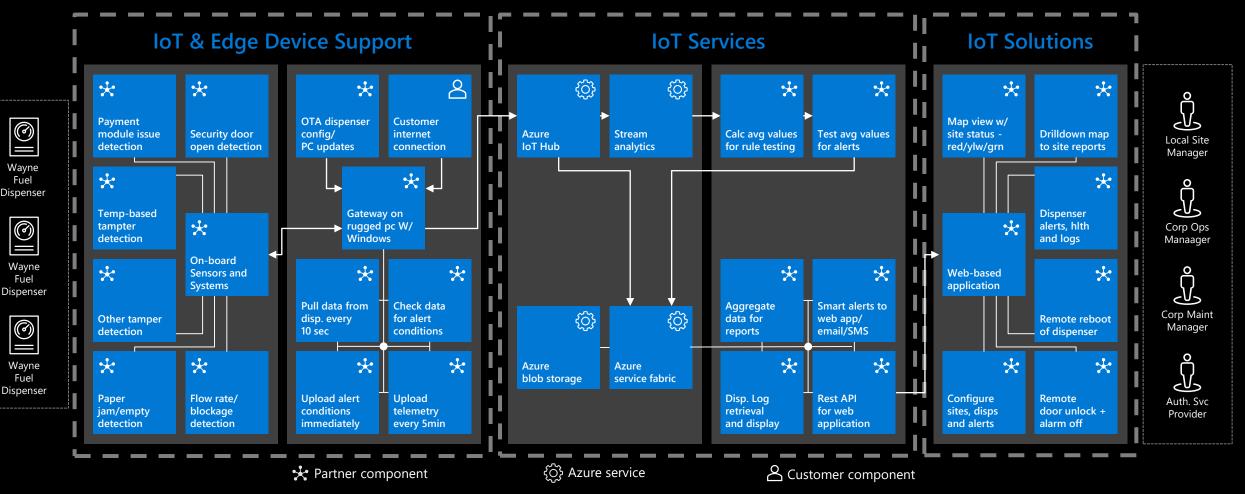
Microsoft's IoT Platform



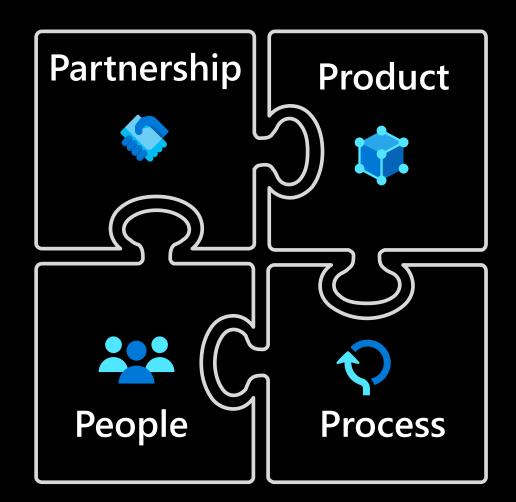
Comprehensive and consistent

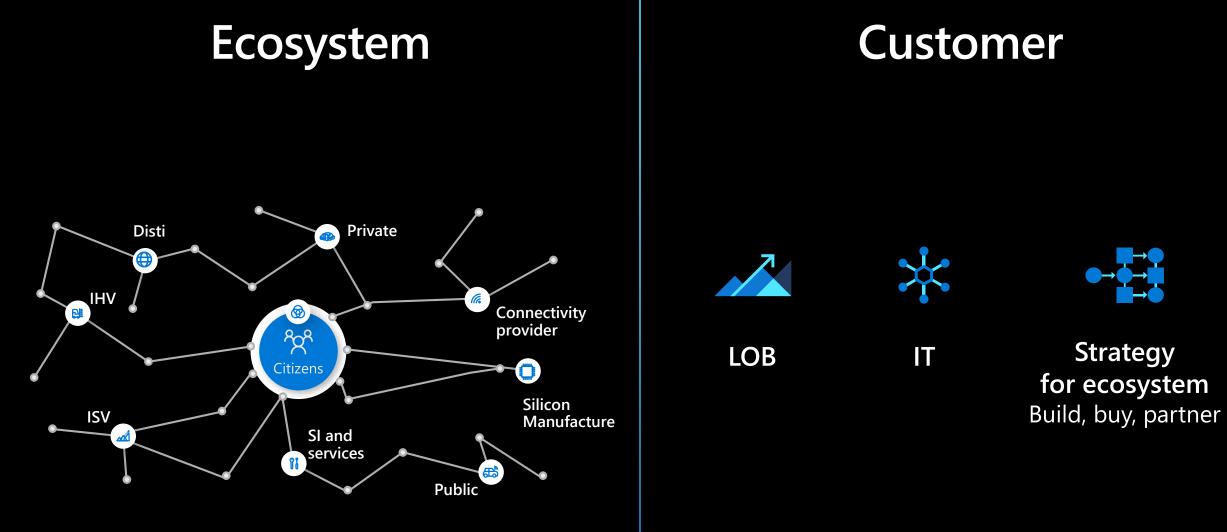
App platform | Security | Identity | Management

iSense[™] architecture



Success in IoT





Microsoft IoT platform innovations last year

>100

Partner provided co-sell ready solutions

>1,200

Ecosystem partners

-

>10,000

Partnership

Within the ecosystem, **partners need to be committed** and have a passion for guiding innovators swiftly throughout the entire journey...

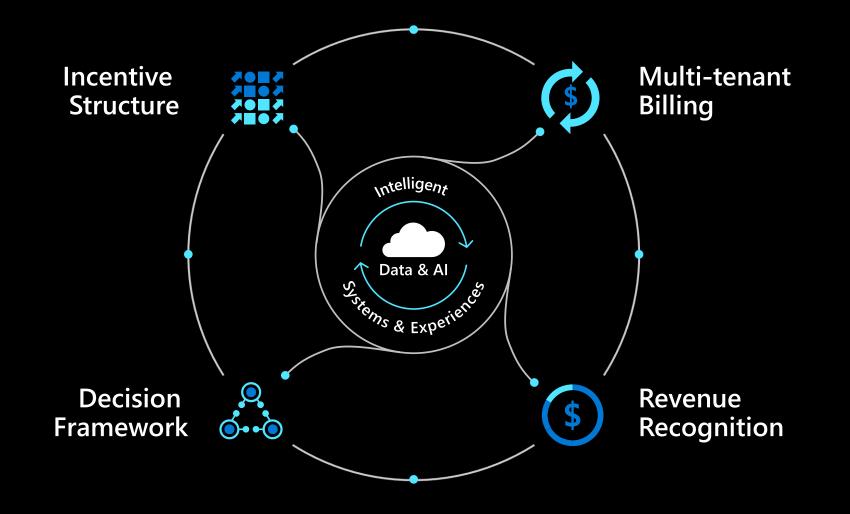
Microsoft Azure offers extraordinary power, performance and intelligence, and allows us to easily do things with machine learning, edge computing, and artificial intelligence that would be much more difficult otherwise.

— Gary Slater, Digital and Data Science Architect

We emphasize collaboration, using realtime data to make it easier for people to work together as a team and achieve better results in less time. And because we're using Microsoft Azure, we can offer global collaboration, so our customers can use it on **any site or in any country** and every user is on the same database.

— Sebastian Spindler
Key Account & Partner Manager

Process

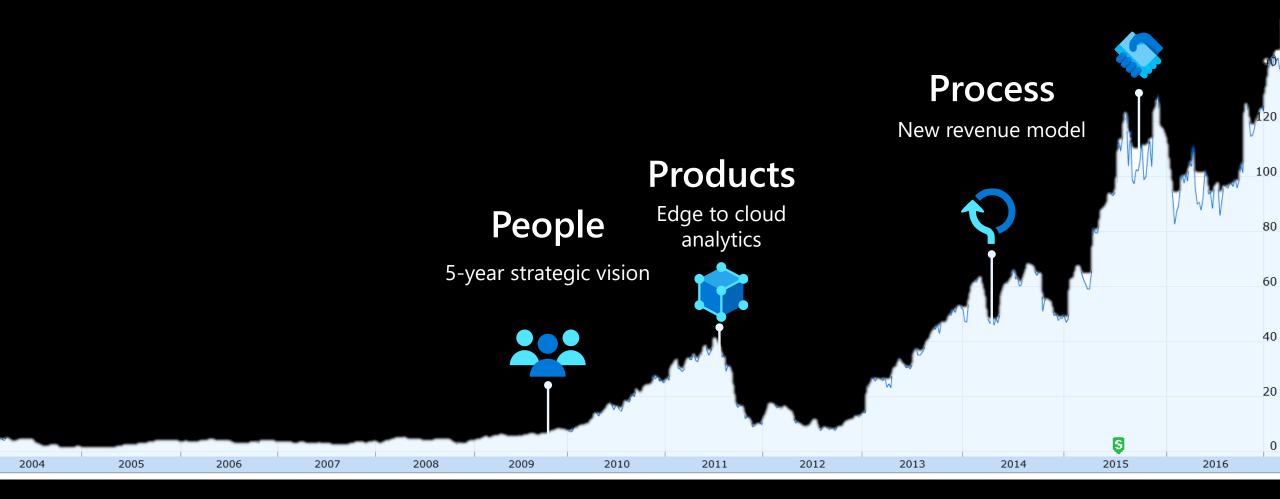


People

Culture was the key for us. Our CEO had to ensure that **every single leader** was on the same page on what we were trying to accomplish

PCL

Sustained value

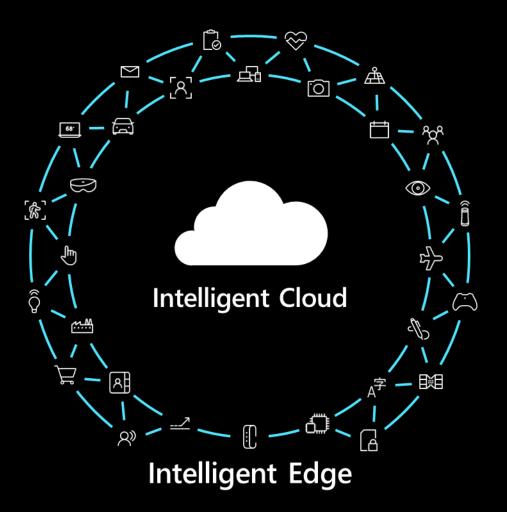


Embrace Transformation

Lead with growth mindset

Drive long

term vision

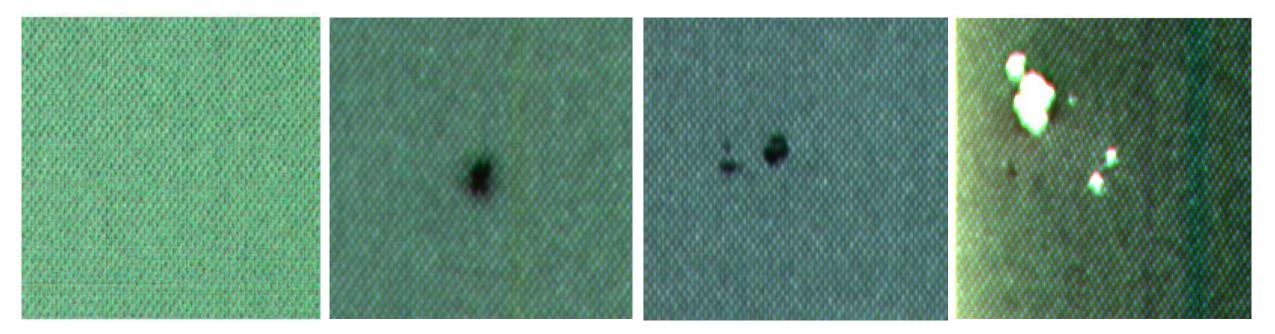


Empower every person and every organization on the planet to achieve more

Thank you

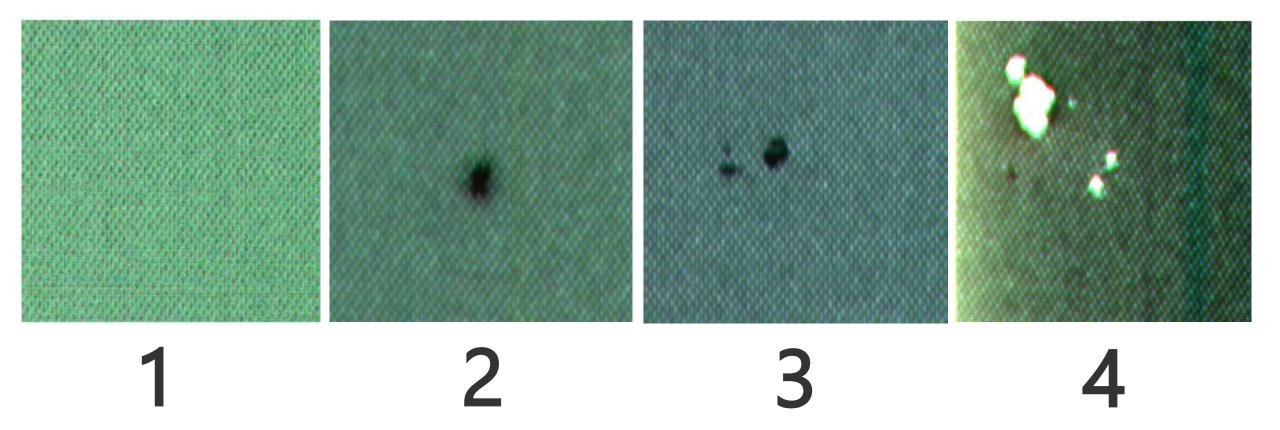
Stephen Welch

VP of Data Science Mariner

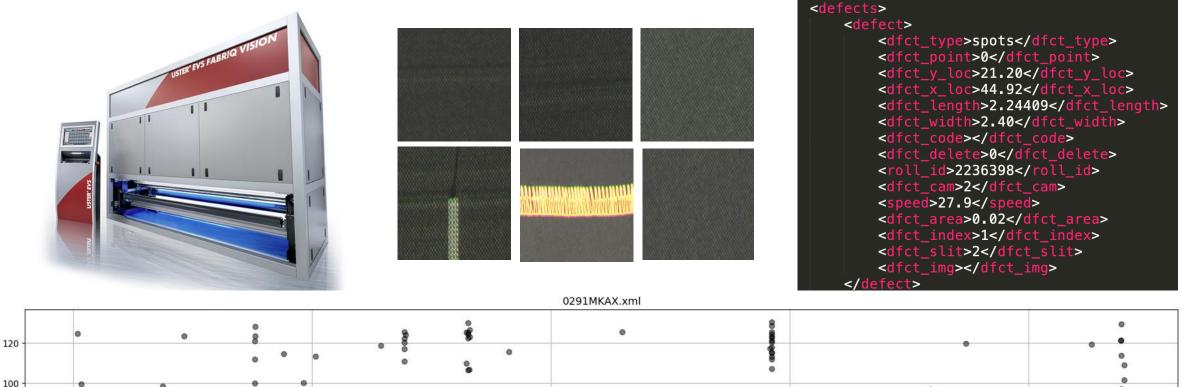


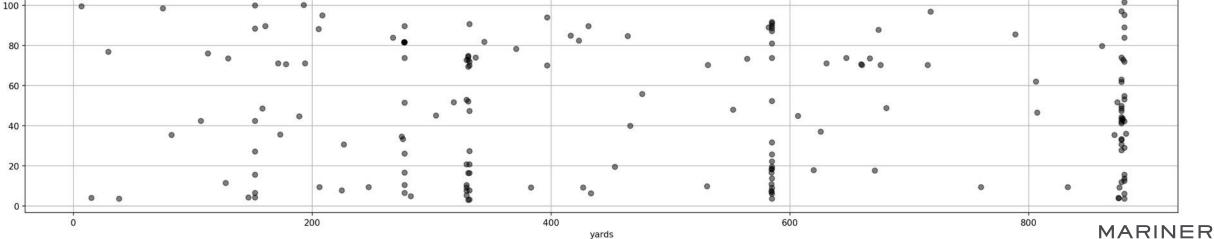
IoT Found a Snag

Which Images Show Defects?

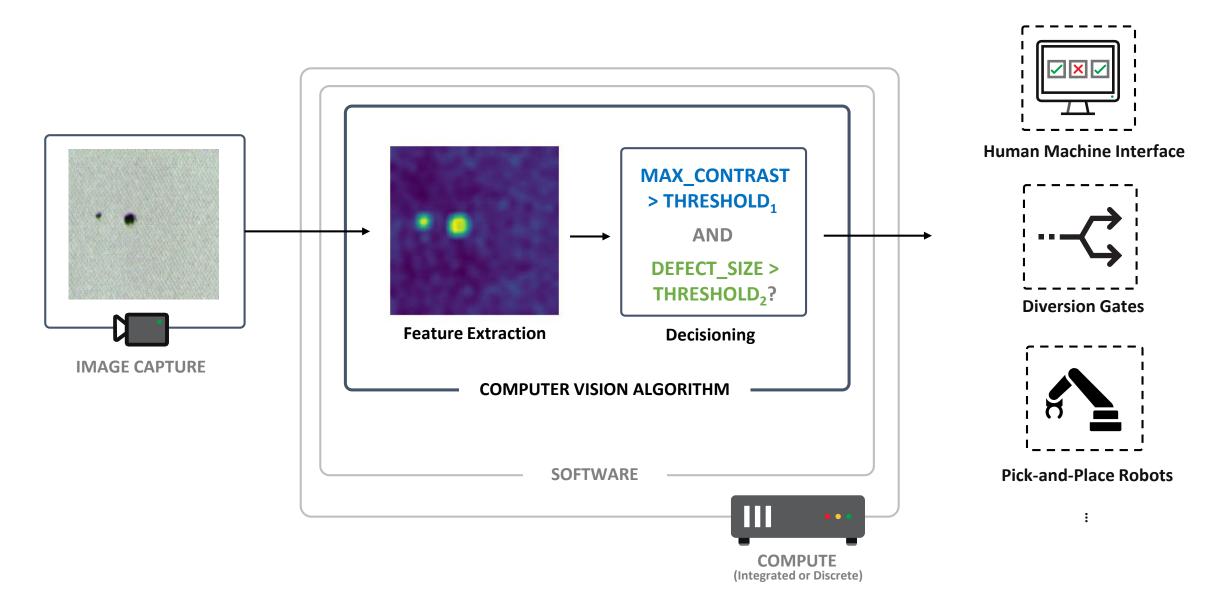


Our data comes from a tricky fabric manufacturing problem

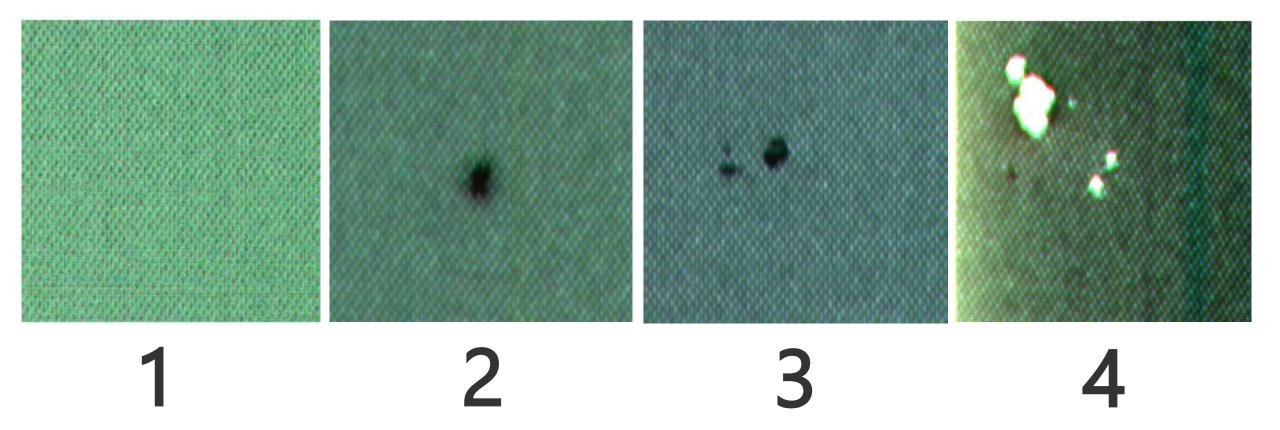




Traditional machine vision systems use a two step process to make decisions



Which Images Show Defects?



Which Images Show Defects?



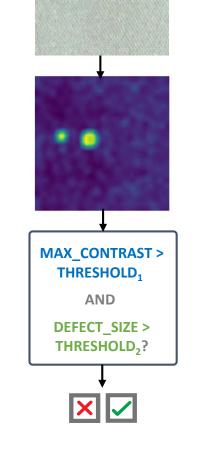
GOOD DEFECTIVE GOOD DEFECTIVE

TRADITIONAL MACHINE VISION

IMAGE CAPTURE

FEATURE EXTRACTION

These algorithms are typically designed once by vision system manufacturer, and "baked in" to production software.



DEEP LEARNING MODEL

IMAGE CAPTURE

MODEL TRAINED ON YOUR DATA

Deep learning model trained using labeled examples from your experts, and updated as conditions change.

PREDICTIONS/RESULTS

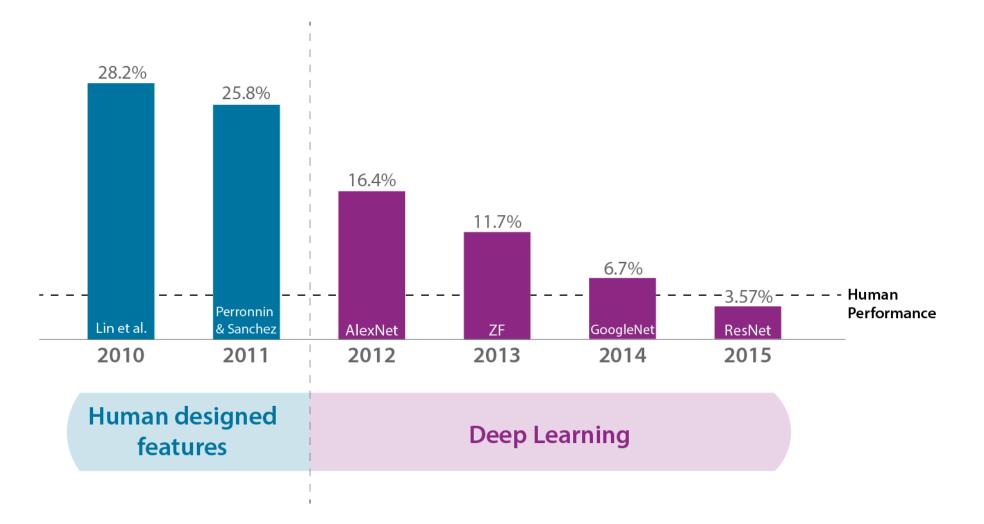
DECISIONING

May consist of many tunable parameters, often difficult to find optimal configuration, even for experts.

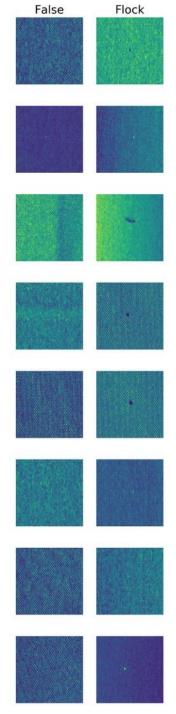
PREDICTIONS/RESULTS

IMAGENET IMAGE CLASSIFICATION TOP-5 ERROR RATE

(ILSVRC, lower is better)



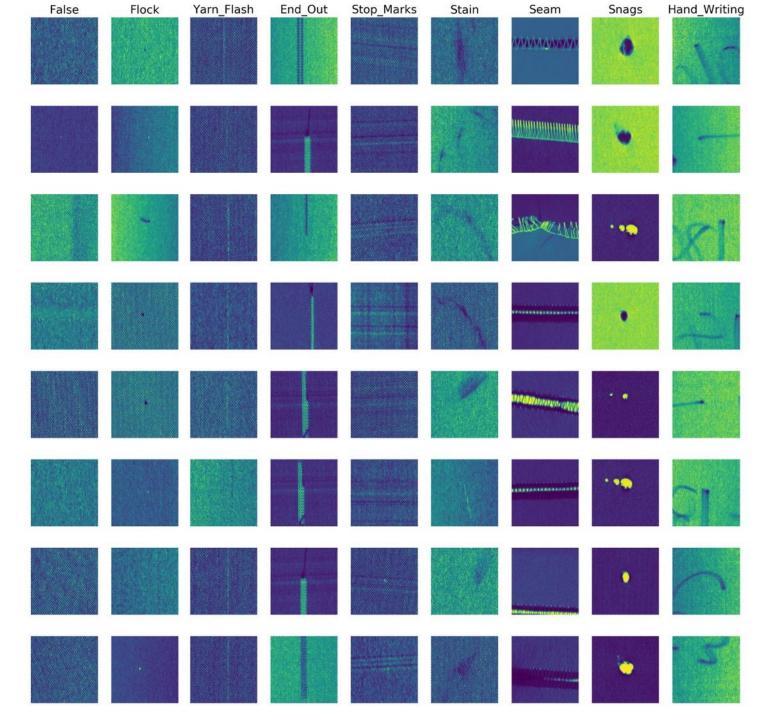
Alexnet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012. ResNet He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



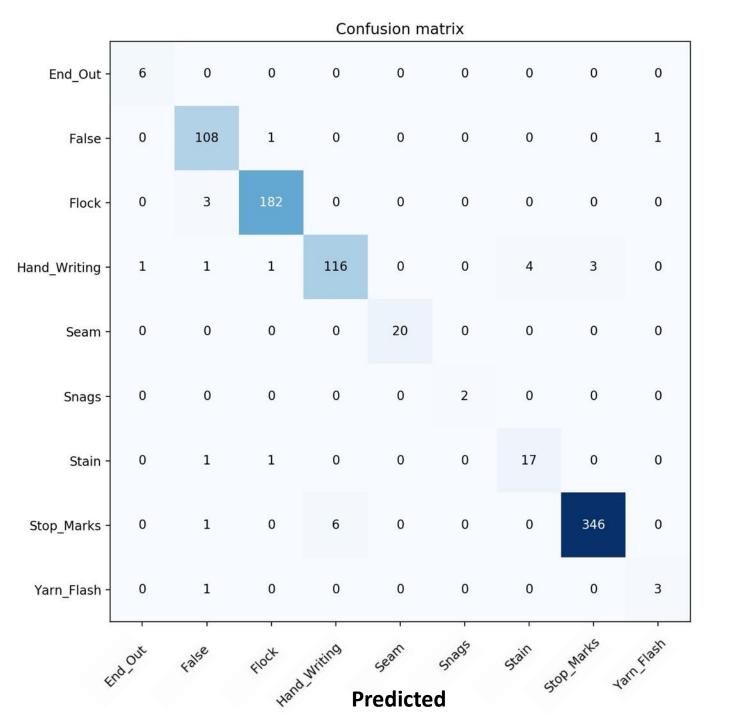
We begin by iteratively labeling a dataset with our customer.

False	Flock	Yarn_Flash	End_Out	Stop_Marks	Stain	Seam	Snags
					t.	1727233737232237272727	•
							•
	C.						•••
					2		•
					1	a parta a parta a parta da par	
				ta magazira Maria			•••
							•
				all and a second	4		6

We begin by iteratively labeling a dataset with our customer.



Containerizing and building on Azure IoT Edge lets us quickly make changes, add new classes, and deploy new models.



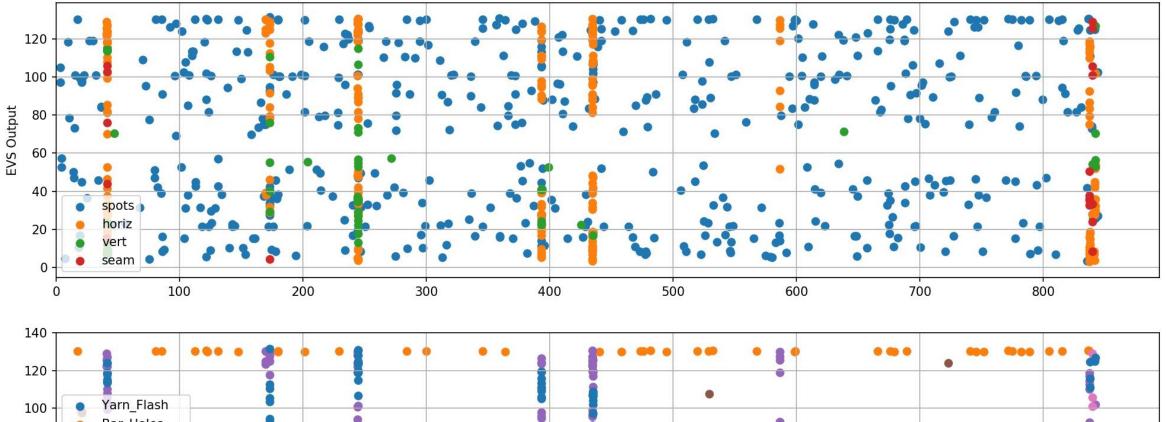
97.7% ResNet Accuracy Classification accuracy on held out test set

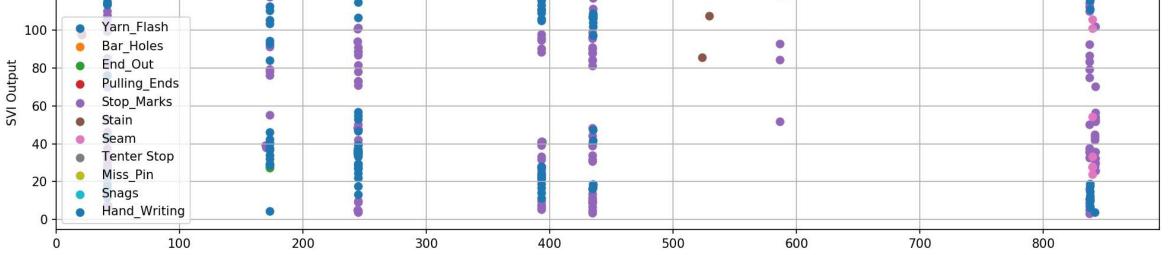
False Rejects Reduction Reduced rate from 16.8 to 0.47 false rejects per 100 yds

12-5X Improvement Over Manual Inspection

Reduced False Reject Rate to 0.47 and False Negative Rate to <0.2, relative to manual inspection targets of 1/100yds

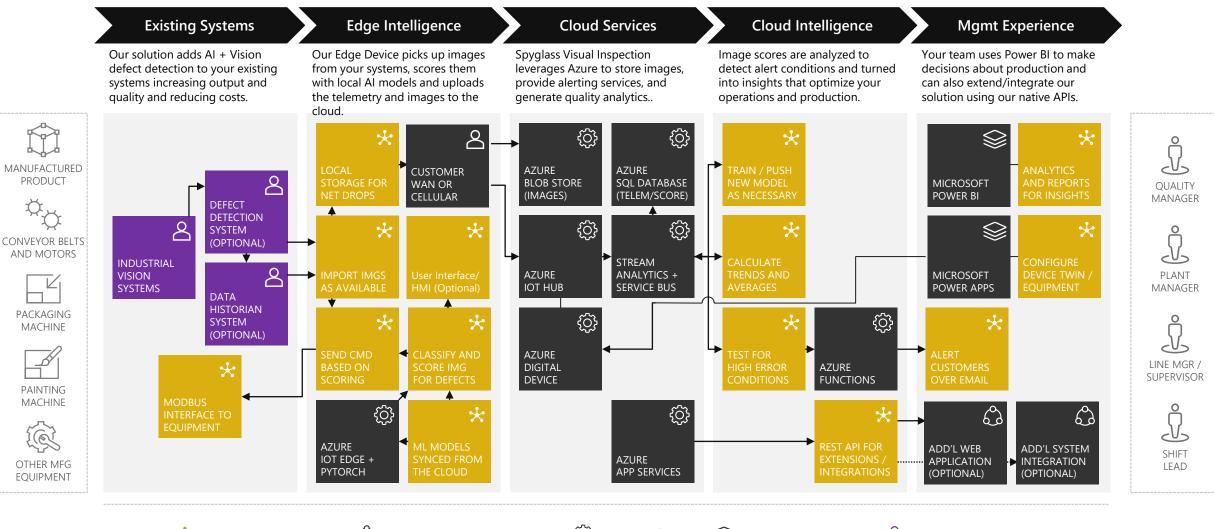
0296ALGO.xml





MARINER Insight to Achieve

Ok, great results! Now, how do we deploy and maintain?



Spyglass Visual Inspection

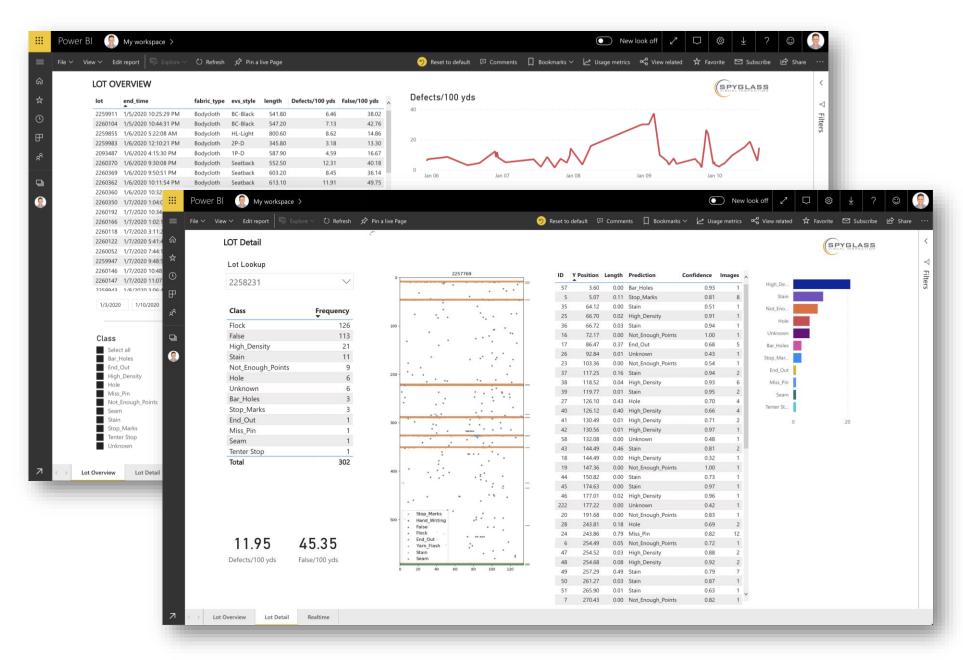
Solution Builder component

දිටිුි Azure service

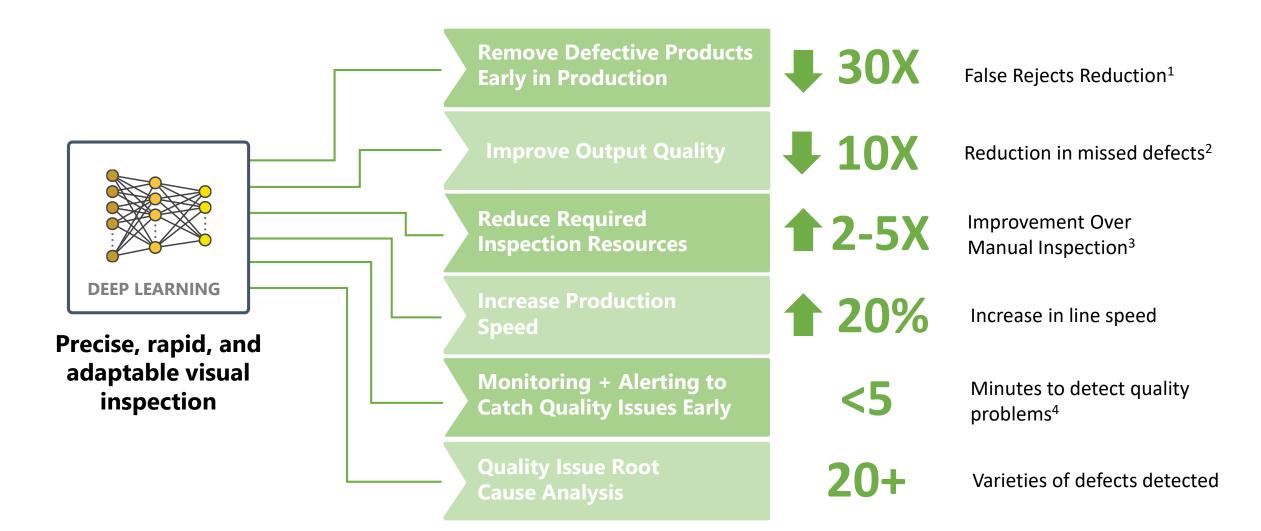
Se Microsoft product

 \bigcirc Customer component

Spyglass delivers real-time monitoring and alerting through local HMIs and Power BI



Deep Learning Drives Many Paths to Business Value



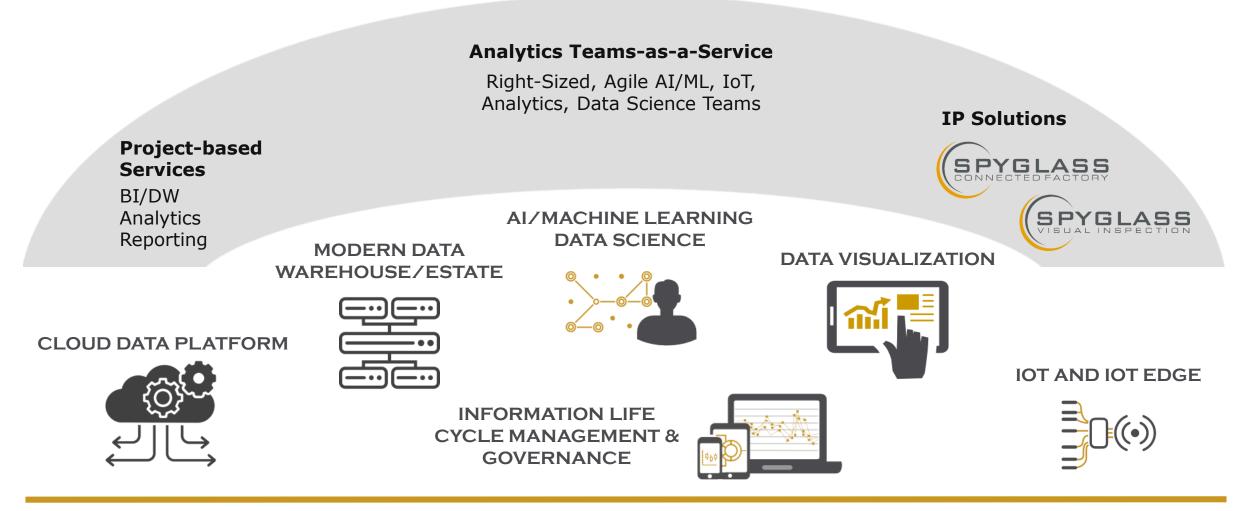
1. Reduced rate from 16.8 to 0.47 false rejects per 100 yds, relative to existing vision system

2. Relative to traditional machine vision system

3. Reduced False Reject Rate to 0.47 and False Negative Rate to <0.2, relative to manual inspection targets of 1/100yd

4. For Spyglass implementations built on Spyglass Connected Factory infrastructure

Mariner – Manufacturing Analytics



Deep Learning. Delivered.

Our Guaranteed Approach to Visual Inspection

Define Success

The Spyglass team works with you to define your unique vision accuracy requirements.

Supply Images

.....

Provide sets of images of your products that represent acceptable quality as well as images of each class of defect.

Prove it Works

Using supplied images, the Spyglass team builds an AI model demonstrating the success criteria

MARINER

Thank you!

O in Action

#IoTinActionMS